Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Medical Journal ; (24): 1942-1950, 2019.
Article in English | WPRIM | ID: wpr-802775

ABSTRACT

Background@#Henoch-Schonlein purpura nephritis (HSPN) is a very common secondary kidney disease of childhood. Its pathogenesis and the treatment mechanism of glucocorticoid have not been fully elucidated. The aim of this study was to determine the relationship between p300 and the pathogenesis, glucocorticoid therapy in mice with HSPN, respectively.@*Methods@#Forty-eight C57BL/6N male mice, weighing 18 to 20 g, were selected (3–4 weeks old, n = 8 per group). The mice in the normal control group (Group I) were given normal solvent and the HSPN model group (Group II) were given sensitizing drugs. The mice in Group III were injected intraperitoneally with dexamethasone after being given sensitizing drugs. Meanwhile, mice in Groups IV, V and VI with conditional knockout of p300 were also given normal solvent, sensitizing drugs and dexamethasone. The levels of serum IgA, creatinine, and circulating immune complex (CIC) concentrations, 24 h urinary protein and urinary erythrocyte in C57 wild mice, and p300 conditional knockout mice in each group were measured. The expression of p300 in renal tissues and the expression of glucocorticoid receptor (GR) α and β, transforming growth factor (TGF)-β1, and activator protein (AP)-1 after dexamethasone treatment were determined by real-time polymerase chain reaction and Western blotting.@*Results@#Compared with the normal solvent control group (Group I), the expression of p300 mRNA in the model group (Group II) was significantly up-regulated. Western blotting further confirmed the result. Urinary erythrocyte count, 24 h urinary protein quantification, serum IgA, CIC, and renal pathologic score in Group V were distinctly decreased compared with non-knockout mice in Group II (9.7 ± 3.8 per high-power field [/HP] vs. 18.7 ± 6.2/HP, t = 1.828, P = 0.043; 0.18 ± 0.06 g/24 h vs. 0.36 ± 0.08 g/24 h, t = 1.837, P = 0.042; 18.78 ± 0.85 mg/mL vs. 38.46 ± 0.46 mg/mL, t = 1.925, P = 0.038; 0.80 ± 0.27 μg/mL vs. 1.64 ± 0.47 μg/mL, t = 1.892, P = 0.041; 7.0 ± 0.5 vs. 18.0 ± 0.5, t = 1.908, P = 0.039). Compared with non-knockout mice (Group III), the level of urinary erythrocyte count and serum IgA in knockout mice (Group VI) increased significantly after treatment with dexamethasone (3.7 ± 0.6/HP vs. 9.2 ± 3.5/HP, t = 2.186, P = 0.024; 12.38 ± 0.26 mg/mL vs. 27.85 ± 0.65 mg/mL, t = 1.852, P = 0.041). The expression level of GRα was considerably increased in the knockout group after dexamethasone treatment compared with non-knockout mice in mRNA and protein level (t = 2.085, P = 0.026; t = 1.928, P = 0.035), but there was no statistically significant difference in the expression level of GRβ between condition knockout and non-knockout mice (t = 0.059, P = 0.087; t = 0.038, P = 1.12). Furthermore, the expression levels of glucocorticoid resistance genes (AP-1 and TGF-β1) were notably increased after p300 knockout compared with non-knockout mice in mRNA and protein level (TGF-β1: t = 1.945, P = 0.034; t = 1.902, P = 0.039; AP-1: t = 1.914, P = 0.038; t = 1.802, P = 0.041).@*Conclusions@#p300 plays a crucial role in the pathogenesis of HSPN. p300 can down-regulate the expression of resistance genes (AP-1 and TGF-β1) by binding with GRα to prevent further renal injury and glucocorticoid resistance. Therefore, p300 is a promising new target in glucocorticoid therapy in HSPN.

2.
Chinese Medical Journal ; (24): 1942-1950, 2019.
Article in English | WPRIM | ID: wpr-774687

ABSTRACT

BACKGROUND@#Henoch-Schonlein purpura nephritis (HSPN) is a very common secondary kidney disease of childhood. Its pathogenesis and the treatment mechanism of glucocorticoid have not been fully elucidated. The aim of this study was to determine the relationship between p300 and the pathogenesis, glucocorticoid therapy in mice with HSPN, respectively.@*METHODS@#Forty-eight C57BL/6N male mice, weighing 18 to 20 g, were selected (3-4 weeks old, n = 8 per group). The mice in the normal control group (Group I) were given normal solvent and the HSPN model group (Group II) were given sensitizing drugs. The mice in Group III were injected intraperitoneally with dexamethasone after being given sensitizing drugs. Meanwhile, mice in Groups IV, V and VI with conditional knockout of p300 were also given normal solvent, sensitizing drugs and dexamethasone.The levels of serum IgA, creatinine, and circulating immune complex (CIC) concentrations, 24 h urinary protein and urinary erythrocyte in C57 wild mice, and p300 conditional knockout mice in each group were measured. The expression of p300 in renal tissues and the expression of glucocorticoid receptor (GR) α and β, transforming growth factor (TGF)-β1, and activator protein (AP)-1 after dexamethasone treatment were determined by real-time polymerase chain reaction and Western blotting.@*RESULTS@#Compared with the normal solvent control group (Group I), the expression of p300 mRNA in the model group (Group II) was significantly up-regulated. Western blotting further confirmed the result. Urinary erythrocyte count, 24 h urinary protein quantification, serum IgA, CIC, and renal pathologic score in Group V were distinctly decreased compared with non-knockout mice in Group II (9.7 ± 3.8 per high-power field [/HP] vs. 18.7 ± 6.2/HP, t = 1.828, P = 0.043; 0.18 ± 0.06 g/24 h vs. 0.36 ± 0.08 g/24 h, t = 1.837, P = 0.042; 18.78 ± 0.85 mg/mL vs. 38.46 ± 0.46 mg/mL, t = 1.925, P = 0.038; 0.80 ± 0.27 μg/mL vs. 1.64 ± 0.47 μg/mL, t = 1.892, P = 0.041; 7.0 ± 0.5 vs. 18.0 ± 0.5, t = 1.908, P = 0.039). Compared with non-knockout mice (Group III), the level of urinary erythrocyte count and serum IgA in knockout mice (Group VI) increased significantly after treatment with dexamethasone (3.7 ± 0.6/HP vs. 9.2 ± 3.5/HP, t = 2.186, P = 0.024; 12.38 ± 0.26 mg/mL vs. 27.85 ± 0.65 mg/mL, t = 1.852, P = 0.041). The expression level of GRα was considerably increased in the knockout group after dexamethasone treatment compared with non-knockout mice in mRNA and protein level (t = 2.085, P = 0.026; t = 1.928, P = 0.035), but there was no statistically significant difference in the expression level of GRβ between condition knockout and non-knockout mice (t = 0.059, P = 0.087; t = 0.038, P = 1.12). Furthermore, the expression levels of glucocorticoid resistance genes (AP-1 and TGF-β1) were notably increased after p300 knockout compared with non-knockout mice in mRNA and protein level (TGF-β1: t = 1.945, P = 0.034; t = 1.902, P = 0.039; AP-1: t = 1.914, P = 0.038; t = 1.802, P = 0.041).@*CONCLUSIONS@#p300 plays a crucial role in the pathogenesis of HSPN. p300 can down-regulate the expression of resistance genes (AP-1 and TGF-β1) by binding with GRα to prevent further renal injury and glucocorticoid resistance. Therefore, p300 is a promising new target in glucocorticoid therapy in HSPN.

3.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 312-316, 2010.
Article in Chinese | WPRIM | ID: wpr-231532

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of Chinese herbs for nourishing Shen-yin and removing Xiang-fire (NYRF) on estrogen receptor (ER) expression in uterus and ovary of rats contaminated with nonylphenol (NP) or its bisphenol A (BPA) mixture, for exploring the action mechanism of NYRF in antagonizing the estrogen-mimetic activity of environmental endocrine disruptors (EEDs).</p><p><b>METHODS</b>EEDs contaminated female SD rats, 3-week old, were divided into two groups, the treated group fed with NYRF and the control group with corn oil during the same period of contaminating for 15 days. The wet weight (WW) and organ coefficient (OC) of uterus in rats, as well as the ER protein and mRNA expressions in rat's uterus and ovary were detected and compared.</p><p><b>RESULTS</b>As compared with normal range, WW and OC increased significantly in the contaminated rats of the control group, with significantly down-regulated ER protein expression in uterus, and expressions of ER alpha and ER beta gene and protein in ovary (P<0.05). While in the treated group, the above-mentioned abnormalities of various indicators were markedly reversed to a certain extent (P<0.05).</p><p><b>CONCLUSION</b>EEDs show estrogenic-mimetic action on productive organs, which could be antagonized by NYRF, resulting in the down-regulated mRNA and protein expressions of ER in reproductive organs, so as to reduce the sensibility of reproductive organs to EEDs, which is probably one of the acting mechanisms of NYRF.</p>


Subject(s)
Animals , Female , Rats , Drugs, Chinese Herbal , Pharmacology , Endocrine Disruptors , Toxicity , Ovary , Metabolism , Rats, Sprague-Dawley , Receptors, Estrogen , Metabolism , Uterus , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL